Question:
A uniform rectangular thin sheet $\mathrm{ABCD}$ of mass $\mathrm{M}$ has length a and breadth $b$, as shown in the figure. If the shaded portion HBGO is cut-off, the coordinates of the centre of mass of the remaining portion will be :
$\left(\frac{3 a}{4}, \frac{3 b}{4}\right)$
$\left(\frac{5 a}{3}, \frac{5 b}{3}\right)$
$\left(\frac{2 a}{3}, \frac{2 b}{3}\right)$
$\left(\frac{5 a}{12}, \frac{5 b}{12}\right)$
Question of from chapter.
JEE Main Previous Year 8Apr. 2019
Correct Option: 4
Solution:
Related Questions
A rod of length $L$ has non-uniform linear mass density given by $\rho(x)=a+b\left(\frac{x}{\mathrm{~L}}\right)^{2}$, where $a$ and $b$ are constants and $0 \leq x \leq \mathrm{L}$. The value of $x$ for the centre of mass of the rod is at:
The coordinates of centre of mass of a uniform flag shaped lamina (thin flat plale) of mass $4 \mathrm{~kg}$. (The coordinates of the same are shown in figure) are:
As shown in fig. when a spherical cavity (centred at $O$ ) of radius 1 is cut out of a uniform sphere of radius $R$ (centred at $C$ ), the centre of mass of remaining (shaded) part of sphere is at $G$, i.e on the surface of the cavity. $R$ can be determined by the equation:
Three point particles of masses $1.0 \mathrm{~kg}, 1.5 \mathrm{~kg}$ and $2.5 \mathrm{~kg}$ are placed at three corners of a right angle triangle of sides $4.0 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and $5.0 \mathrm{~cm}$ as shown in the figure. The center of mass of the system is at a point:
Three particles of masses $50 \mathrm{~g}, 100 \mathrm{~g}$ and $150 \mathrm{~g}$ are placed at the vertices of an equilateral triangle of side $1 \mathrm{~m}$ (as shown in the figure). The $(x, y)$ coordinates of the centre of mass will be :
Four particles A, B, C and D with masses $m_{\mathrm{A}}=m, m_{\mathrm{B}}=$ $2 \mathrm{~m}, m_{\mathrm{C}}=3 \mathrm{~m}$ and $m_{\mathrm{D}}=4 \mathrm{~m}$ are at the corners of a square. They have accelerations of equal magnitude with directions as shown. The acceleration of the centre of mass of the particles is :
The position vector of the centre of mass $r_{\mathrm{cm}}$ of an asymmetric uniform bar of negligible area of crosssection as shown in figure is:
A force of $40 \mathrm{~N}$ acts on a point $\mathrm{B}$ at the end of an $\mathrm{L}$-shaped object, as shown in the figure. The angle $\theta$ that will produce maximum moment of the force about point $A$ is given by:
In a physical balance working on the principle of moments, when $5 \mathrm{mg}$ weight is placed on the left pan, the beam becomes horizontal. Both the empty pans of the balance are of equal mass. Which of the following statements is correct?
In the figure shown $\mathrm{ABC}$ is a uniform wire. If centre of mass of wire lies vertically below point $A$, then $\frac{B C}{A B}$ is close to :