A value of $\tan ^{-1}\left(\sin \left(\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)\right)\right.$ is
Correct Option: 4
Related Questions
If $\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)$, where $0<\alpha, \beta<\frac{\pi}{2}$, then $\alpha-\beta$ is equal to:
A value of $x$ satisfying the equation $\sin \left[\cot ^{-1}(1+x)\right]=\cos$ $\left[\tan ^{-1} x\right]$, is :
The principal value of $\tan ^{-1}\left(\cot \frac{43 \pi}{4}\right)$ is:
The number of solutions of the equation, $\sin ^{-1} x=2 \tan ^{-1} x$ (in principal values) is :
A value of $\tan ^{-1}\left(\sin \left(\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)\right)\right.$ is
The largest interval lying in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ for which the function, $f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)$, is defined, is
The domain of the function $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is
The trigonometric equation $\sin ^{-1} x=2 \sin ^{-1} a$ has a solution for
$$
\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x
$$ then $\sin x=$
The domain of $\sin ^{-1}\left[\log _{3}(x / 3)\right]$ is