# Consider the following two binary relations on the set A = {a, b, c} : R1 = {(c, a) (b, b) , (a, c), (c, c), (b, c), (a, a)} and R2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c). Then

Question:

Consider the following two binary relations on the set $A=\{a, b, c\}: R_{1}=\{(\mathrm{c}, a)(b, b),(\mathrm{a}, c),(c, c),(b, c),(a, a)\}$ and $R_{2}=\{(a, b),(b, a),(c, c),(c, a),(a, a),(b, b),(a, c)$. Then

1. $R_{2}$ is symmetric but it is not transitive

2. Both $R_{1}$ and $R_{2}$ are transitive

3. Both $R_{1}$ and $R_{2}$ are not symmetric

4. $R_{1}$ is not symmetric but it is transitive

Correct Option: 1

JEE Main Previous Year 1 Question of JEE Main from Mathematics Sets, Relations and Functions chapter.
JEE Main Previous Year Online April 15, 2018

Solution:

### Related Questions

• Let $R_{1}$ and $R_{2}$ be two relations defined as follows :

$R_{1}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \in Q\right\}$ and

$R_{2}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \notin Q\right\}$, where $Q$ is the set of all rational numbers. Then :

View Solution

• The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty]$. Then $a$ is equal to :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of $f$ is :

View Solution

• The domain of the definition of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is:

View Solution

• The range of the function $f(x)=\frac{x}{1+|x|}, x \in R$, is is

View Solution

• The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is

View Solution

• Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is

View Solution

• Let $[t]$ denote the greatest integer $\leq t$. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :

View Solution

error: Content is protected !!