# Expression for time in terms of $\mathrm{G}$ (universal gravitational constant), $\mathrm{h}$ (Planck’s constant) and $\mathrm{c}$ (speed of light) is proportional to:

Question:

Expression for time in terms of $\mathrm{G}$ (universal gravitational constant), $\mathrm{h}$ (Planck’s constant) and $\mathrm{c}$ (speed of light) is proportional to:

1. $\sqrt{\frac{\mathrm{hc}^{5}}{\mathrm{G}}}$

2. $\sqrt{\frac{c^{3}}{G h}}$

3. $\sqrt{\frac{\mathrm{Gh}}{\mathrm{c}^{5}}}$

4. $\sqrt{\frac{\mathrm{Gh}}{\mathrm{c}^{3}}}$

JEE Main Previous Year Single Correct Question of JEE Main from Chemistry Laws of Motion chapter.

JEE Main Previous Year 2019

Correct Option: 3

Solution:

Let $t \propto G^{x} h^{y} C^{z}$

Dimensions of $\mathrm{G}=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$

$\mathrm{h}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$ and $\mathrm{C}=\left[\mathrm{LT}^{-1}\right]$

$[\mathrm{T}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{\mathrm{x}}\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{\mathrm{y}}\left[\mathrm{LT}^{-1}\right]^{\mathrm{z}}$ $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]=\left[\mathrm{M}^{-\mathrm{x}+\mathrm{y}} \mathrm{L}^{3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}} \mathrm{T}^{-2 \mathrm{x}-\mathrm{y}-2}\right]$

By comparing the powers of $\mathrm{M}, \mathrm{L}, \mathrm{T}$ both the sides

\begin{aligned} &-x+y=0 \Rightarrow x=y \\ &3 x+2 y+z=0 \Rightarrow 5 x+z=0 \\ &-2 x-y-z=1 \quad \Rightarrow 3 x+z=-1 \end{aligned}

Solving eqns. (i) and (ii),

$\mathrm{x}=\mathrm{y}=\frac{1}{2}, \mathrm{z}=-\frac{5}{2} \therefore \mathrm{t} \propto \sqrt{\frac{\mathrm{Gh}}{\mathrm{C}^{5}}}$

### Related Questions

• The density of a material in SI unit is $128 \mathrm{~kg} \mathrm{~m}^{-3} .$ In certain units in which the unit of length is $25 \mathrm{~cm}$ and the unit of mass is $50 \mathrm{~g}$, the numerical value of density of the material is:

View Solution

• A metal sample carrying a current along $X$-axis with density $J_{x}$ is subjected to a magnetic field $\mathrm{B}_{\mathrm{z}}$ (along z-axis). The electric field $E_{y}$ developed along Y-axis is directly proportional to $J_{x}$ as well as $\mathrm{B}_{Z}$. The constant of proportionality has SI unit

View Solution

• The quantities $x=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}, y=\frac{E}{B}$ and $z=\frac{1}{C R}$ are defined where $C$-capacitance, $R$-Resistance, $l$-length, $E$-Electric field, $B$-magnetic field and $\varepsilon_{0}, \mu_{0},-$ free space permittivity and permeability respectively. Then :

View Solution

• Dimensional formula for thermal conductivity is (here $K$ denotes the temperature:

View Solution

• Dimensional formula for thermal conductivity is (here $K$ denotes the temperature:

View Solution

• A quantity $x$ is given by $\left(I F v^{2} / W L^{4}\right)$ in terms of moment of inertia $I$, force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of :

View Solution

• Amount of solar energy received on the earth’s surface per unit area per unit time is defined a solar constant. Dimension of solar constant is:

View Solution

• If speed $\mathrm{V}$, area $\mathrm{A}$ and force $\mathrm{F}$ are chosen as fundamental units, then the dimension of Young’s modulus will be :

View Solution

• If momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is:

View Solution

• Which of the following combinations has the dimension of electrical resistance $\left(\epsilon_{0}\right.$ is the permittivity of vacuum and $\mu_{o}$ is the permeability of vacuum)?

View Solution

error: Content is protected !!
Download App