Question:
For a plane electromagnetic wave, the magnetic field at a point $x$ and time $t$ is
$$ \overrightarrow{\mathrm{B}}(x, t)=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3}{ }_{\rightarrow}+1.5 \times 10^{11} t\right) \hat{k}\right] \mathrm{T} $$
The instantaneous electric field $\vec{E}$ corresponding to $B$
is: (speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$ )
- $\overrightarrow{\mathrm{E}}(x, t)=\left[-36 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{j}\right] \frac{\mathrm{V}}{\mathrm{m}}$
- $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(1 \times 10^{3} x+0.5 \times 10^{11} t\right) \hat{j}\right] \frac{\mathrm{V}}{\mathrm{m}}$
- $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{k}\right] \frac{\mathrm{V}}{\mathrm{m}}$
- $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(1 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{i}\right] \frac{\mathrm{V}}{\mathrm{m}}$
Correct Option: 1
JEE Main Previous Year 1 Question of JEE Main from Physics Electromagnetic Waves chapter.
JEE Main Previous Year Sep. 06, 2020 (II)
Solution:
