For a plane electromagnetic wave, the magnetic field at a point x and time t is … The instantaneous electric field E corresponding to B is:

Question:

For a plane electromagnetic wave, the magnetic field at a point $x$ and time $t$ is

$$ \overrightarrow{\mathrm{B}}(x, t)=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3}{ }_{\rightarrow}+1.5 \times 10^{11} t\right) \hat{k}\right] \mathrm{T} $$

The instantaneous electric field $\vec{E}$ corresponding to $B$

is: (speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$ )

 

  1. $\overrightarrow{\mathrm{E}}(x, t)=\left[-36 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{j}\right] \frac{\mathrm{V}}{\mathrm{m}}$
  2. $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(1 \times 10^{3} x+0.5 \times 10^{11} t\right) \hat{j}\right] \frac{\mathrm{V}}{\mathrm{m}}$
  3. $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{k}\right] \frac{\mathrm{V}}{\mathrm{m}}$
  4. $\overrightarrow{\mathrm{E}}(x, t)=\left[36 \sin \left(1 \times 10^{3} x+1.5 \times 10^{11} t\right) \hat{i}\right] \frac{\mathrm{V}}{\mathrm{m}}$

Correct Option: 1

JEE Main Previous Year 1 Question of JEE Main from Physics Electromagnetic Waves chapter.

JEE Main Previous Year Sep. 06, 2020 (II)

Solution:

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!