Question:
For a simple pendulum, a graph is plotted between its kinetic energy (KE) and potential energy (PE) against its displacement d. Which one of the following represents these correctly? (graphs are schematic and not drawn to scale)
Question of from chapter.
JEE Main Previous Year 2015
Correct Option: 4
Solution:
Download now India’s Best Exam Preparation App
Class 9-10, JEE & NEET
Related Questions
The position co-ordinates of a particle moving in a 3-D coordinate system is given by
$x=\mathrm{a} \cos \omega \mathrm{t}$
$y=a \sin \omega t$
and $z=a \omega t$
The speed of the particle is:
TTwo simple harmonic motions, as shown, are at right angles. They are combined to form Lissajous figures.
$$
\begin{aligned}
&x(t)=A \sin (a t+\delta) \\
&y(t)=B \sin (b t)
\end{aligned}
$$
Identify the correct match below
The ratio of maximum acceleration to maximum velocity in a simple harmonic motion is $10 \mathrm{~s}^{-1}$. At, $\mathrm{t}=0$ the displacement is $5 \mathrm{~m}$. What is the maximum acceleration ? The initial phase is $\frac{\pi}{4}$
A particle performs simple harmonic mition with amplitude A. Its speed is trebled at the instant that it is at a distance $\frac{2 \mathrm{~A}}{3}$ from equilibrium position. The new amplitude of the motion is :
Two particles are performing simple harmonic motion in a straight line about the same equilibrium point. The amplitude and time period for both particles are same and equal to $\mathrm{A}$ and $\mathrm{T}$, respectively. At time $\mathrm{t}=0$ one particle has displacement $A$ while the other one has displacement
$\frac{-\mathrm{A}}{2}$ and they are moving towards each other. If they cross each other at time $\mathrm{t}$, then $\mathrm{t}$ is:
A simple harmonic oscillator of angular frequency $2 \mathrm{rad}$ $\mathrm{s}^{-1}$ is acted upon by an external force $\mathrm{F}=\sin t \mathrm{~N}$. If the oscillator is at rest in its equilibrium position at $t=0$, its position at later times is proportional to:
$x$ and $y$ displacements of a particle are given as $x(t)=a \sin$ $\omega t$ and $y(t)=a \sin 2 \omega t$. Its trajectory will look like :
A body is in simple harmonic motion with time period half second $(T=0.5 \mathrm{~s})$ and amplitude one $\mathrm{cm}(A=1 \mathrm{~cm})$. Find the average velocity in the interval in which it moves form equilibrium position to half of its amplitude.
Which of the following expressions corresponds to simple harmonic motion along a straight line, where $x$ is the displacement and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive constants?
A particle which is simultaneously subjected to two perpendicular simple harmonic motions represented by; $x=a_{1} \cos \omega t$ and $y=a_{2} \cos 2 \omega t$ traces a curve given by: