For x 3 0, 2 æ ö Îç ÷ è ø , let f(x) = x , g(x) = tan x and h(x) = 2 2 1 . 1 x x – + If f (x) = ((hof)og) (x), then f 3 æ ö p ç ÷ è ø is equal to :

Question:

For $x \in\left(0, \frac{3}{2}\right), \operatorname{let} f(x)=\sqrt{x}, \mathrm{~g}(x)=\tan x$ and $h(x)=\frac{1-x^{2}}{1+x^{2}}$ If $\phi(x)=((h o f) o g)(x)$, then $\phi\left(\frac{\pi}{3}\right)$ is equal to :

  1. $\tan \frac{\pi}{12}$

  2. $\tan \frac{11 \pi}{12}$

  3. $\tan \frac{7 \pi}{12}$

  4. $\tan \frac{5 \pi}{12}$


Correct Option: 2

JEE Main Previous Year 1 Question of JEE Main from Mathematics Sets, Relations and Functions chapter.
JEE Main Previous Year April 12, 2019 (I)

Solution:

Related Questions

  • Let $R_{1}$ and $R_{2}$ be two relations defined as follows :

    $R_{1}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \in Q\right\}$ and

    $R_{2}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \notin Q\right\}$, where $Q$ is the set of all rational numbers. Then :

    View Solution

  • The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty]$. Then $a$ is equal to :

    View Solution

  • If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

    View Solution

  • If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

    View Solution

  • Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of $f$ is :

    View Solution

  • The domain of the definition of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is:

    View Solution

  • The range of the function $f(x)=\frac{x}{1+|x|}, x \in R$, is is

    View Solution

  • The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is

    View Solution

  • Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is

    View Solution

  • Let $[t]$ denote the greatest integer $\leq t$. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :

    View Solution

Leave a Reply

Your email address will not be published.

error: Content is protected !!
Download App