# For xÎR – {0, 1}, let f 1 (x) = 1 x , f 2 (x) = 1 – x and f 3 (x) = 1 1- x be three given functions. If a function, J(x) satisfies (f2 oJof1 ) (x) = f3 (x) then J(x) is equal to:

Question:

For $x \in \mathbf{R}-\{0,1\}, \operatorname{let} f_{1}(x)=\frac{1}{x}, f_{2}(x)=1-x$ and $f_{3}(x)=\frac{1}{1-x}$ be three given functions. If a function, $\mathrm{J}(x)$ satisfies $\left(\mathrm{f}_{2} \mathrm{oJof} \mathrm{J}_{1}\right)(x)=\mathrm{f}_{3}(x)$ then $\mathrm{J}(x)$ is equal to:

1. $f_{3}(x)$

2. $\frac{1}{x} f_{3}(x)$

3. $f_{2}(x)$

4. $f_{1}(x)$

Correct Option: 1

JEE Main Previous Year 1 Question of JEE Main from Mathematics Sets, Relations and Functions chapter.
JEE Main Previous Year Jan. 09, 2019 (I)

Solution:

### Related Questions

• Let $R_{1}$ and $R_{2}$ be two relations defined as follows :

$R_{1}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \in Q\right\}$ and

$R_{2}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \notin Q\right\}$, where $Q$ is the set of all rational numbers. Then :

View Solution

• The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty]$. Then $a$ is equal to :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of $f$ is :

View Solution

• The domain of the definition of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is:

View Solution

• The range of the function $f(x)=\frac{x}{1+|x|}, x \in R$, is is

View Solution

• The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is

View Solution

• Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is

View Solution

• Let $[t]$ denote the greatest integer $\leq t$. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :

View Solution

error: Content is protected !!