Question:
If speed $(\mathrm{V})$, acceleration $(\mathrm{A})$ and force $(\mathrm{F})$ are considered as fundamental units, the dimension of Young’s modulus will be :
$\mathrm{V}^{-2} \mathrm{~A}^{2} \mathrm{~F}^{-2}$
$\mathrm{V}^{-2} \mathrm{~A}^{2} \mathrm{~F}^{2}$
$\mathrm{V}^{-4} \mathrm{~A}^{-2} \mathrm{~F}$
$\mathrm{V}^{-4} \mathrm{~A}^{2} \mathrm{~F}$
Question of from chapter.
JEE Main Previous Year 2019
Correct Option: 4
Solution:
$$
\begin{aligned}
&\text { Let }[\mathrm{Y}]=[\mathrm{V}]^{\mathrm{a}}[\mathrm{F}]^{\mathrm{b}}[\mathrm{A}]^{\mathrm{c}} \\
&{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\left[\mathrm{LT}^{-1}\right]^{\mathrm{a}}\left[\mathrm{MLT}^{-2}\right]^{\mathrm{b}}\left[\mathrm{LT}^{-2}\right]^{\mathrm{c}}} \\
&{\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\left[\mathrm{M}^{\mathrm{b}} \mathrm{L}^{\mathrm{a}+\mathrm{b}+\mathrm{c}} \mathrm{T}^{-\mathrm{a}-2 \mathrm{~b}-2 \mathrm{c}}\right]}
\end{aligned}
$$
Comparing power both side of similar terms we get,
$\mathrm{b}=1, \mathrm{a}+\mathrm{b}+\mathrm{c}=-1,-\mathrm{a}-2 \mathrm{~b}-2 \mathrm{c}=-2$
solving above equations we get:
$$
\begin{aligned}
&\mathrm{a}=-4, \mathrm{~b}=1, \mathrm{c}=2 \\
&\text { so }[\mathrm{Y}]=\left[\mathrm{V}^{-4} \mathrm{FA}^{2}\right]=\left[\mathrm{V}^{-4} \mathrm{~A}^{2} \mathrm{~F}\right]
\end{aligned}
$$
Download now India’s Best Exam Preparation App
Class 9-10, JEE & NEET
Related Questions
The density of a material in SI unit is $128 \mathrm{~kg} \mathrm{~m}^{-3} .$ In certain units in which the unit of length is $25 \mathrm{~cm}$ and the unit of mass is $50 \mathrm{~g}$, the numerical value of density of the material is:
A metal sample carrying a current along $X$-axis with density $J_{x}$ is subjected to a magnetic field $\mathrm{B}_{\mathrm{z}}$ (along z-axis). The electric field $E_{y}$ developed along Y-axis is directly proportional to $J_{x}$ as well as $\mathrm{B}_{Z}$. The constant of proportionality has SI unit
The quantities $x=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}, y=\frac{E}{B}$ and $z=\frac{1}{C R}$ are defined where $C$-capacitance, $R$-Resistance, $l$-length, $E$-Electric field, $B$-magnetic field and $\varepsilon_{0}, \mu_{0},-$ free space permittivity and permeability respectively. Then :
Dimensional formula for thermal conductivity is (here $K$ denotes the temperature:
Dimensional formula for thermal conductivity is (here $K$ denotes the temperature:
A quantity $x$ is given by $\left(I F v^{2} / W L^{4}\right)$ in terms of moment of inertia $I$, force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of :
Amount of solar energy received on the earth’s surface per unit area per unit time is defined a solar constant. Dimension of solar constant is:
If speed $\mathrm{V}$, area $\mathrm{A}$ and force $\mathrm{F}$ are chosen as fundamental units, then the dimension of Young’s modulus will be :
If momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is:
Which of the following combinations has the dimension of electrical resistance $\left(\epsilon_{0}\right.$ is the permittivity of vacuum and $\mu_{o}$ is the permeability of vacuum)?