Question:
Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{49}$ be in A.P. such that
$$
\begin{aligned}
&\sum_{\mathrm{k}=0}^{12} \mathrm{a}_{4 \mathrm{k}+\mathrm{l}}=416 \text { and } \mathrm{a}_{9}+\mathrm{a}_{43}=66 \text {. If } \\
&\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\ldots+\mathrm{a}_{17}^{2}=140 \mathrm{~m}, \text { then } \mathrm{m} \text { is equal to }
\end{aligned}
$$
Correct Option: 2
JEE Main Previous Year 2018
Solution: