# Let 2 f(x x x ) = ( 1) –1, –1 + ³ Statement -1 : The set {x : f(x) = f –1(x) = {0, –1} Statement-2 : f is a biection.

Question:

Let $f(x)=(x+1)^{2}-1, x \geq-1$

Statement -1: The set $\left\{x: f(x)=f^{-1}(x)=\{0,-1\}\right.$

Statement-2: $f$ is a bijection.

1. Statement- 1 is true, Statement- 2 is true. Statement- 2 is not a correct explanation for Statement-1.

2. Statement- 1 is true, Statement- 2 is false.

3. Statement- 1 is false, Statement- 2 is true.

4. Statement- 1 is true, Statement- 2 is true. Statement- 2 is a correct explanation for Statement- 1 .

Correct Option: 4

JEE Main Previous Year 1 Question of JEE Main from Mathematics Sets, Relations and Functions chapter.
JEE Main Previous Year 2009

Solution:

### Related Questions

• Let $R_{1}$ and $R_{2}$ be two relations defined as follows :

$R_{1}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \in Q\right\}$ and

$R_{2}=\left\{(a, b) \in \mathbf{R}^{2}: a^{2}+b^{2} \notin Q\right\}$, where $Q$ is the set of all rational numbers. Then :

View Solution

• The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty]$. Then $a$ is equal to :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• If $R=\left\{(x, y): x, y \in \mathbf{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers $\mathbf{Z}$, then the domain of $R^{-1}$ is :

View Solution

• Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{1+x^{2}}, x \in R$. Then the range of $f$ is :

View Solution

• The domain of the definition of the function $f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is:

View Solution

• The range of the function $f(x)=\frac{x}{1+|x|}, x \in R$, is is

View Solution

• The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is

View Solution

• Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is

View Solution

• Let $[t]$ denote the greatest integer $\leq t$. Then the equation in $x,[x]^{2}+2[x+2]-7=0$ has :

View Solution

error: Content is protected !!