Let A be a 2 × 2 matrix with real entries. Let I be the 2 × 2 identity matrix. Denote by tr(A), the sum of diagonal entries of a. Assume that A2 = I. Statement-1 : If A ¹ I and A ¹ –I, then det (A) = –1 Statement-2 : If A ¹ I and A ¹ –I, then tr (A) ¹ 0.

Question:

Let $A$ be $a 2 \times 2$ matrix with real entries. Let $I$ be the $2 \times 2$ identity matrix. Denote by $\operatorname{tr}(A)$, the sum of diagonal entries of $a$. Assume that $A^{2}=I$.

Statement-1: If $A \neq I$ and $A \neq-I$, then $\operatorname{det}(A)=-1$

Statement-2 : If $A \neq I$ and $A \neq-I$, then $\operatorname{tr}(A) \neq 0$.

  1. Statement $-1$ is false, Statement- 2 is true

  2. Statement – 1 is true, Statement- 2 is true; Statement – 2 is a correct explanation for Statement-1

  3. Statement $-1$ is true, Statement- 2 is true; Statement $-2$ is not a correct explanation for Statement-1

  4. Statement $-1$ is true, Statement- 2 is false


Correct Option: 4

JEE Main Previous Year 1 Question of JEE Main from Mathematics Matrices and Determinants chapter.
JEE Main Previous Year 2008

Solution:

Related Questions

  • Let $\theta=\frac{\pi}{5}$ and $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. If $\mathrm{B}=\mathrm{A}+\mathrm{A}^{4}$, then det (B):

    View Solution

  • If $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=A x^{3}+B x^{2}+C x+D$ then $B+C$ is equal to :

    View Solution

  • Let $a-2 b+c=1$.

    If $f(x)=\left|\begin{array}{lll}x+a & x+2 & x+1 \\ x+b & x+3 & x+2 \\ x+c & x+4 & x+3\end{array}\right|$

    then : 

    View Solution

  • If $\Delta_{1}=\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ and $\Delta_{2}=\left|\begin{array}{ccc}x & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -x & 1 \\ \cos 2 \theta & 1 & x\end{array}\right|, x \neq 0 ;$

    then for all $\theta \in\left(0, \frac{\pi}{2}\right)$ :

    View Solution

  • The sum of the real roots of the equation

    $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$, is equal to: 

    View Solution

  • Let $\mathrm{A}=\left[\begin{array}{ccc}2 & \mathrm{~b} & 1 \\ \mathrm{~b} & \mathrm{~b}^{2}+1 & \mathrm{~b} \\ 1 & \mathrm{~b} & 2\end{array}\right]$ where $\mathrm{b}>0$. Then the minimum

    value of $\frac{\operatorname{det}(\mathrm{A})}{\mathrm{b}}$ is:

    View Solution

  • If $\left|\begin{array}{lll}x-4 & 2 x & 2 x \\ 2 x & x-4 & 2 x \\ 2 x & 2 x & x-4\end{array}\right|=(A+B x)(x-A)^{2}$, then the ordered pair $(A, B)$ is equal to :

    View Solution

  • If $S=\left\{x \in[0,2 \pi]:\left|\begin{array}{ccc}0 & \cos x & -\sin x \\ \sin x & 0 & \cos x \\ \cos x & \sin x & 0\end{array}\right|=0\right\}$, then $\sum_{x \in S} \tan \left(\frac{\pi}{3}+x\right)$ is equal to

    View Solution

  • If $\mathrm{A}=\left[\begin{array}{cc}-4 & -1 \\ 3 & 1\end{array}\right]$, then the determinant of the matrix $\left(A^{2016}-2 A^{2015}-A^{2014}\right)$ is :

    View Solution

  • $\left|\begin{array}{ccc}x^{2}+x & x+1 & x-2 \\ 2 x^{2}+3 x-1 & 3 x & 3 x-3 \\ x^{2}+2 x+3 & 2 x-1 & 2 x-1\end{array}\right|=a x-12$, then ‘ $a$ ‘ is equal to :

    View Solution

Leave a Reply

Your email address will not be published.

error: Content is protected !!
Download App