# Let $\overrightarrow{\mathrm{A}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})$ and $\overrightarrow{\mathrm{B}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})$. The magnitude of a coplanar vector $\overrightarrow{\mathrm{C}}$ such that $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}$ is given by

Question:

Let $\overrightarrow{\mathrm{A}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})$ and $\overrightarrow{\mathrm{B}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})$. The magnitude of a coplanar vector $\overrightarrow{\mathrm{C}}$ such that $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}$ is given by

1. $\sqrt{\frac{5}{9}}$

2. $\sqrt{\frac{10}{9}}$

3. $\sqrt{\frac{20}{9}}$

4. $\sqrt{\frac{9}{12}}$

JEE Main Previous Year Single Correct Question of JEE Main from Physics Motion in a Plane chapter.

JEE Main Previous Year April 16, 2018

Correct Option: 1

Solution:

error: Content is protected !!