RD Sharma Class 9 Rationalization Exercise 3.1 Solutions

On this page you will find Maths RD Sharma Class 9 Rationalization Exercise 3.1 Solutions. The solutions provided here are to help students practice math problems and get better at solving difficult chapter questions. Maths chapter 3 for class 9 deals with the topic of triangles and it is one of the most important chapters.

    Download RD Sharma Class 9 Rationalization Exercise 3.1 Solutions in PDF

    Students can use these solutions to overcome the fear of maths and the solutions have been designed in such a way that it enables them to discover easy ways to solve different problems. These solutions can help students in refining their maths fluency and problem-solving skills. Students can go through the RD Sharma solutions for class 9 chapter 3 Rationalization Exercise 3.1 below and it will be beneficial for them.

     

    RD Sharma Class 9 Rationalization Exercise 3.1 Solutions

    1. Simplify each of the following:
    (i) $\sqrt[3]{4} \times \sqrt[3]{16}$
    (ii) $\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}$
    Sol:
    (i) $\frac{\sqrt[4]{1250}}{\sqrt[4]{2}}$

    $=\sqrt[3]{4 \times 16}$
    $=\sqrt[3]{64}$

    $=\left(4^{3}\right)^{\frac{1}{3}}$
    $=4\left(3 \times \frac{1}{3}\right)$
    $=4^{1}$
    $=4$



    $=\sqrt[4]{625}$

    $=15\left(4 \times \frac{1}{4}\right)$
    $=15$

    2. Simplify the following expressions:
    (i) $(4+\sqrt{7})(3+\sqrt{2})$
    (ii) $(3+\sqrt{3})(5-\sqrt{2})$
    (iii) $(\sqrt{5}-2)(\sqrt{3}-\sqrt{5})$
    Solution:
    (i) $(4+\sqrt{7})(3+\sqrt{2})$
    $=12+4 \sqrt{2}+3 \sqrt{7}+\sqrt{7 \times 2}$
    $=12+4 \sqrt{2}+3 \sqrt{7}+\sqrt{14}$
    (ii) $(3+\sqrt{3})(5-\sqrt{2})$
    $=15-3 \sqrt{2}+5 \sqrt{3}-\sqrt{3 \times 2}$
    $=15-3 \sqrt{2}+5 \sqrt{3}-\sqrt{6}$
    (iii) $(\sqrt{5}-2)(\sqrt{3}-\sqrt{5})$
    $=\sqrt{15}-\sqrt{25}-2 \sqrt{3}+2 \sqrt{5}$
    $=\sqrt{15}-\sqrt{5 \times 5}-2 \sqrt{3}+2 \sqrt{5}$
    $=\sqrt{15}-5-2 \sqrt{3}+2 \sqrt{5}$

    3. Simplify the following expressions:
    (i) $(11+\sqrt{11})(11-\sqrt{11})$
    (ii) $(5+\sqrt{7})(5-\sqrt{7})$
    (iii) $(\sqrt{8}-\sqrt{2})(\sqrt{8}+\sqrt{2})$
    (iv) $(3+\sqrt{3})(3-\sqrt{3})$
    (v) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$
    Solution:
    (i) $(11+\sqrt{11})(11-\sqrt{11})$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    So, $11^{2}-11$
    $121-11=110$
    (ii) $(5+\sqrt{7})(5-\sqrt{7})$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    So, $5^{2}-7$
    $25-7=18$
    (iii) $(\sqrt{8}-\sqrt{2})(\sqrt{8}+\sqrt{2})$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $\sqrt{8 \times 8}-\sqrt{2 \times 2}=8-2$
    $=6$
    (iv) $(3+\sqrt{3})(3-\sqrt{3})$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=9-\sqrt{3 \times 3}$
    $=6$
    (v) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\sqrt{5 \times 5}-\sqrt{2 \times 2}$
    $=5-2$
    $=3$

    4. Simplify the following expressions:
    (i) $(\sqrt{3}+\sqrt{7})^{2}$
    (ii) $(\sqrt{5}-\sqrt{3})^{2}$
    (iii) $(2 \sqrt{5}+3 \sqrt{2})^{2}$
    Solution:
    (i) $(\sqrt{3}+\sqrt{7})^{2}$
    As we know, $(a+b)^{2}=\left(a^{2}+2 \times a \times b+b^{2}\right)$
    $=\sqrt{3^{2}}+2 \times \sqrt{3} \times \sqrt{7}+\sqrt{7^{2}}$
    $=3+2 \times \sqrt{3 \times 7}+7$
    $=10+2 \times \sqrt{21}$
    (ii) $(\sqrt{5}-\sqrt{3})^{2}$
    As we know,$(a-b)^{2}=\left(a^{2}-2 \times a \times b+b^{2}\right)$
    (iii) $(2 \sqrt{5}+3 \sqrt{2})^{2}$
    As we know,$(a+b)^{2}=\left(a^{2}+2 \times a \times b+b^{2}\right)$
    $=4 \sqrt{5 \times 5}+2 \times 2 \sqrt{5} \times 3 \sqrt{2}+9 \sqrt{2 \times 2}$
    $=20+12 \sqrt{10}+18$
    $=28+12 \sqrt{10}$

      Leave a Comment

      Your email address will not be published. Required fields are marked *

      error: Content is protected !!