RD Sharma Class 9 Rationalization Exercise 3.2 Solutions

On this page you will find Maths RD Sharma Class 9 Rationalization Exercise 3.2 Solutions. The solutions provided here are to help students practice math problems and get better at solving difficult chapter questions. Maths chapter 3 for class 9 deals with the topic of triangles and it is one of the most important chapters.

    Download RD Sharma Class 9 Rationalization Exercise 3.2 Solutions in PDF

    Students can use these solutions to overcome the fear of maths and the solutions have been designed in such a way that it enables them to discover easy ways to solve different problems. These solutions can help students in refining their maths fluency and problem-solving skills. Students can go through the RD Sharma solutions for class 9 chapter 3 Rationalization Exercise 3.2 below and it will be beneficial for them.

     

    RD Sharma Class 9 Rationalization Exercise 3.2 Solutions

    1. Rationalize the denominator of each of the following:
    (i) $\frac{3}{\sqrt{5}}$
    (ii) $\frac{3}{2 \sqrt{5}}$
    (iii) $\frac{1}{\sqrt{12}}$
    (iv) $\frac{\sqrt{2}}{\sqrt{3}}$
    (v) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$
    (vi) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$
    (vii) $\frac{3 \sqrt{2}}{\sqrt{5}}$
    Solution:
    (i) $\frac{3}{\sqrt{5}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{5}$
    $=\frac{3 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$
    $=\frac{3 \times \sqrt{5}}{5}$
    (ii) $\frac{3}{2 \sqrt{5}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{5}$
    $=\frac{3 \times \sqrt{5}}{2 \sqrt{5} \times \sqrt{5}}$
    $=\frac{3 \sqrt{5}}{2 \times \sqrt{5 \times 5}}$
    $=\frac{3 \sqrt{5}}{2 \times 5}$
    $=\frac{3 \sqrt{5}}{10}$
    (iii) $\frac{1}{\sqrt{12}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{12}$
    $=\frac{1 \times \sqrt{12}}{\sqrt{12} \times \sqrt{12}}$
    $=\frac{\sqrt{12}}{\sqrt{12 \times 12}}$
    $=\frac{\sqrt{12}}{12}$
    (iv) $\frac{\sqrt{2}}{\sqrt{3}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{3}$
    $=\frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
    $=\frac{\sqrt{2 \times 3}}{\sqrt{3 \times 3}}$
    $=\frac{\sqrt{6}}{3}$
    (v) $\frac{\sqrt{3}+1}{\sqrt{2}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{2}$
    $=\frac{(\sqrt{3}+1) \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$
    $=\frac{(\sqrt{3} \times \sqrt{2})+\sqrt{2}}{\sqrt{2 \times 2}}$
    $=\frac{\sqrt{6}+\sqrt{2}}{2}$
    (vi) $\frac{\sqrt{2}+\sqrt{5}}{\sqrt{3}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{3}$
    $=\frac{(\sqrt{2}+\sqrt{5}) \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
    $=\frac{(\sqrt{2} \times \sqrt{3})+(\sqrt{5} \times \sqrt{3})}{\sqrt{3} \times \sqrt{3}}$
    $=\frac{\sqrt{6}+\sqrt{15}}{3}$
    (vii) $\frac{3 \sqrt{2}}{\sqrt{5}}$
    For rationalizing the denominator, multiply both numerator and denominator with $\sqrt{5}$
    $=\frac{3 \sqrt{2} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$
    $=\frac{3 \sqrt{2 \times 5}}{\sqrt{5 \times 5}}$
    $=\frac{3 \sqrt{10}}{5}$

    2. Find the value to three places of decimals of each of the following.
    It is given that $\sqrt{2}=1.414, \sqrt{3}=1.732, \sqrt{5}=2.236, \sqrt{10}=3.162$.
    (i) $\frac{2}{\sqrt{3}}$
    (ii) $\frac{3}{\sqrt{10}}$
    (iii) $\frac{\sqrt{5}+1}{\sqrt{2}}$
    (iv) $\frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}}$
    (v) $\frac{2+\sqrt{3}}{3}$
    (vi) $\frac{\sqrt{2}-1}{\sqrt{5}}$
    Solution:
    Given, $\sqrt{2}=1.414, \sqrt{3}=1.732, \sqrt{5}=2.236, \sqrt{10}=3.162$
    (i) $\frac{2}{\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with $\sqrt{3}$
    $=\frac{2 \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
    $=\frac{2 \sqrt{3}}{\sqrt{3 \times 3}}$
    $=\frac{2 \sqrt{3}}{3}$
    $=\frac{2 \times 1.732}{3}$
    $=\frac{3.464}{3}$
    $=1.154666666$
    (ii) $\frac{3}{\sqrt{10}}$
    Rationalizing the denominator by multiplying both numerator and denominator with $\sqrt{10}$
    $=\frac{3 \sqrt{10}}{\sqrt{10} \times \sqrt{10}}$
    $=\frac{3 \sqrt{10}}{\sqrt{10 \times 10}}$
    $=\frac{3 \sqrt{10}}{10}$
    $=\frac{9.486}{10}$
    $=0.9486$
    (iii) $\frac{\sqrt{5}+1}{\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with $\sqrt{3}$
    $=\frac{(\sqrt{5} \times \sqrt{2})+\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$
    $=\frac{\sqrt{10}+\sqrt{2}}{2}$
    $=\frac{4.576}{2}$
    $=2.288$
    (iv) $\frac{\sqrt{10}+\sqrt{15}}{\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with $\sqrt{2}$
    $=\frac{(\sqrt{10} \times \sqrt{2})+(\sqrt{15} \times \sqrt{2})}{\sqrt{2} \times \sqrt{2}}$
    $=\frac{\sqrt{20}+\sqrt{30}}{2}$
    $=\frac{(\sqrt{10} \times \sqrt{2})+(\sqrt{10} \times \sqrt{3})}{2}$
    $=\frac{(3.162 \times 1.414)+(3.162 \times 1.732)}{2}$
    $=\frac{(4.471068)+(5.476584)}{2}$
    $=\frac{9.947652}{2}$
    $=4.973826$
    (v) $\frac{2+\sqrt{3}}{3}$
    $=\frac{2+1.732}{3}$
    $=\frac{3.732}{3}$
    $=1.244$
    (vi) $\frac{\sqrt{2}-1}{\sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with $\sqrt{5}$
    $=\frac{(\sqrt{2} \times \sqrt{5})-\sqrt{5}}{\sqrt{5} \times \sqrt{5}}$
    $=\frac{\sqrt{10}-\sqrt{5}}{5}$
    $=\frac{3.162-2.236}{5}$
    $=\frac{0.926}{5}$
    $=0.1852$

    3. Express each one of the following with rational denominator:
    (i) $\frac{1}{3+\sqrt{2}}$
    (ii) $\frac{1}{\sqrt{6}-\sqrt{5}}$
    (iii) $\frac{16}{\sqrt{41}-5}$
    (iv) $\frac{30}{5 \sqrt{3}-3 \sqrt{5}}$
    (v) $\frac{1}{2 \sqrt{5}-\sqrt{3}}$
    (vi) $\frac{\sqrt{3}+1}{2 \sqrt{2}-\sqrt{3}}$
    (vii) $\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$
    (viii) $\frac{3 \sqrt{2}+1}{2 \sqrt{5}-3}$
    (ix) $\frac{b^{2}}{\sqrt{\left(a^{2}+b^{2}\right)+a}}$
    Solution:
    (i) $\frac{1}{3+\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3-\sqrt{2}$
    $=\frac{3-\sqrt{2}}{(3+\sqrt{2})(3-\sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{3-\sqrt{2}}{9-2}$
    $=\frac{3-\sqrt{2}}{7}$
    (ii) $\frac{1}{\sqrt{6}-\sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{6}+\sqrt{5}$
    $=\frac{\sqrt{6}+\sqrt{2}}{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{\sqrt{6}+\sqrt{2}}{6-2}$
    $=\frac{\sqrt{6}+\sqrt{2}}{4}$
    (iii) $\frac{16}{\sqrt{41}-5}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{41}+5$
    $=\frac{16 \times(\sqrt{41}+5)}{(\sqrt{41}-5)(\sqrt{41}+5)}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{16 \sqrt{41}+80}{41-5}$
    $=\frac{16 \sqrt{41}+80}{16}$
    $=\frac{16(\sqrt{41}+5)}{16}$
    $=\sqrt{41}+5$
    (iv) $\frac{30}{5 \sqrt{3}-3 \sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $5 \sqrt{3}+3 \sqrt{5}$
    $=\frac{30 \times(5 \sqrt{3}+3 \sqrt{5})}{(5 \sqrt{3}-3 \sqrt{5})(5 \sqrt{3}+3 \sqrt{5})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{30 \times(5 \sqrt{3}+3 \sqrt{5})}{75-45}$
    $=\frac{30 \times(5 \sqrt{3}+3 \sqrt{5})}{30}$
    $=5 \sqrt{3}+3 \sqrt{5}$
    (v) $\frac{1}{2 \sqrt{5}-\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2 \sqrt{5}+\sqrt{3}$
    $=\frac{2 \sqrt{5}+\sqrt{3}}{(2 \sqrt{5}-\sqrt{3})(2 \sqrt{5}+\sqrt{3})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{2 \sqrt{5}+\sqrt{3}}{20-3}$
    $=\frac{2 \sqrt{5}+\sqrt{3}}{17}$
    (vi) $\frac{\sqrt{3}+1}{2 \sqrt{2}-\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2 \sqrt{2}+\sqrt{3}$
    $=\frac{(\sqrt{3}+1)(2 \sqrt{2}+\sqrt{3})}{(2 \sqrt{2}+\sqrt{3})(2 \sqrt{2}-\sqrt{3})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(2 \sqrt{6}+3+2 \sqrt{2}+\sqrt{3})}{8-3}$
    $=\frac{(2 \sqrt{6}+3+2 \sqrt{2}+\sqrt{3})}{5}$
    (vii) $\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $6-4 \sqrt{2}$
    $=\frac{(6-4 \sqrt{2})(6-4 \sqrt{2})}{(6+4 \sqrt{2})(6-4 \sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(6-4 \sqrt{2})^{2}}{36-32}$
    As we know,$(a-b)^{2}=\left(a^{2}-2 \times a \times b+b^{2}\right)$
    $=\frac{36-48 \sqrt{2}+32}{4}$
    $=\frac{68-48 \sqrt{2}}{4}$
    $=\frac{4(17-12 \sqrt{2})}{4}$
    $=17-12 \sqrt{2}$
    (viii) $\frac{3 \sqrt{2}+1}{2 \sqrt{5}-3}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2 \sqrt{5}-3$
    $=\frac{(3 \sqrt{2}+1) \times(2 \sqrt{5}-3)}{(2 \sqrt{5}-3)(2 \sqrt{5}-3)}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{6 \sqrt{10}-9 \sqrt{2}+2 \sqrt{5}-3}{(20-9)}$
    $=\frac{6 \sqrt{10}-9 \sqrt{2}+2 \sqrt{5}-3}{11}$
    (ix) $\frac{\mathrm{b}^{2}}{\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}+\mathrm{a}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{\left(a^{2}+b^{2}\right)}-a$
    $=\frac{b^{2}\left(\sqrt{\left(a^{2}+b^{2}\right)}-a\right)}{\left(\sqrt{\left(a^{2}+b^{2}\right)}+a\right)\left(\sqrt{\left(a^{2}+b^{2}\right)}-a\right)}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{b^{2}\left(\sqrt{\left(a^{2}+b^{2}\right)}-a\right)}{ \left.\left(a^{2}+b^{2}\right)-a^{2}\right)}$
    $=\frac{b^{2}\left(\sqrt{\left(a^{2}+b^{2}\right)}-a\right)}{b^{2}}$

    4. Rationalize the denominator and simplify:
    (i) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
    (ii) $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}$
    (iii) $\frac{1+\sqrt{2}}{3-2 \sqrt{2}}$
    (iv) $\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}$
    (v) $\frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}$
    (vi) $\frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{2}+3 \sqrt{3}}$
    Solution:
    (i) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{3}-\sqrt{2}$
    $=\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(\sqrt{3}-\sqrt{2})^{2}}{3-2}$
    As we know,$(a-b)^{2}=\left(a^{2}-2 \times a \times b+b^{2}\right)$
    $=\frac{3-2 \sqrt{3} \sqrt{2}+2}{1}$
    $=5-2 \sqrt{6}$
    (ii) $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $7-4 \sqrt{3}$
    $=\frac{(5+2 \sqrt{3})(7-4 \sqrt{3})}{(7+4 \sqrt{3})(7-4 \sqrt{3})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(5+2 \sqrt{3})(7-4 \sqrt{3})}{49-48}$
    $=35-20 \sqrt{3}+14 \sqrt{3}-24$
    $=11-6 \sqrt{3}$
    (iii) $\frac{1+\sqrt{2}}{3-2 \sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3+2 \sqrt{2}$
    $=\frac{(1+\sqrt{2})(3+2 \sqrt{2})}{(3-2 \sqrt{2})(3+2 \sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(1+\sqrt{2})(3+2 \sqrt{2})}{9-8}$
    $=3+2 \sqrt{2}+3 \sqrt{2}+4$
    $=7+5 \sqrt{2}$
    (iv) $\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3 \sqrt{5}+2 \sqrt{6}$
    $=\frac{(2 \sqrt{6}-\sqrt{5})(3 \sqrt{5}+2 \sqrt{6})}{(3 \sqrt{5}-2 \sqrt{6})(3 \sqrt{5}+2 \sqrt{6})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(2 \sqrt{6}-\sqrt{5})(3 \sqrt{5}+2 \sqrt{6})}{45-24}$
    $=\frac{(2 \sqrt{6}-\sqrt{5})(3 \sqrt{5}+2 \sqrt{6})}{21}$
    $=\frac{(2 \sqrt{6}-\sqrt{5})(3 \sqrt{5}+2 \sqrt{6})}{21}$
    $=\frac{6 \sqrt{30}+24-15-2 \sqrt{30}}{21}$
    $=\frac{4 \sqrt{30}+9}{21}$
    (v) $\frac{4 \sqrt{3}+5 \sqrt{2}}{\sqrt{48}+\sqrt{18}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{48}-\sqrt{18}$
    $=\frac{(4 \sqrt{3}+5 \sqrt{2})(\sqrt{48}-\sqrt{18})}{(\sqrt{48}+\sqrt{18})(\sqrt{48}-\sqrt{18})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(4 \sqrt{3}+5 \sqrt{2})(\sqrt{48}-\sqrt{18})}{48-18}$
    $=\frac{48-12 \sqrt{6}+20 \sqrt{6}-30}{30}$
    $=\frac{18+8 \sqrt{6}}{30}$
    $=\frac{9+4 \sqrt{6}}{15}$
    (vi) $\frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{2}+3 \sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2 \sqrt{2}-3 \sqrt{3}$
    $=\frac{(2 \sqrt{3}-\sqrt{5})(2 \sqrt{2}-3 \sqrt{3})}{(2 \sqrt{2}+3 \sqrt{3})(2 \sqrt{2}-3 \sqrt{3})}$
    $=\frac{(2 \sqrt{3}-\sqrt{5})(2 \sqrt{2}-3 \sqrt{3})}{8-27}$
    $=\frac{(4 \sqrt{6}-2 \sqrt{10})-18+3 \sqrt{15})}{-19}$
    $=\frac{(18-4 \sqrt{6}+2 \sqrt{10}-3 \sqrt{15})}{19}$

    5. Simplify:
    (i) $\frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}}$
    (ii) $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$
    (iii) $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}$
    (iv) $\frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}$
    (v) $\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}}$
    Solution:
    (i) $\frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3 \sqrt{2}-2 \sqrt{3}$ for $\frac{1}{3 \sqrt{2}+2 \sqrt{3}}$ and the rationalizing factor $\sqrt{3}+\sqrt{2}$ for $\frac{1}{\sqrt{3}-\sqrt{2}}$
    $=\frac{(3 \sqrt{2}-2 \sqrt{3})(3 \sqrt{2}-2 \sqrt{3})}{(3 \sqrt{2}+2 \sqrt{3})(3 \sqrt{2}-2 \sqrt{3})}+\frac{\sqrt{12}(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
    Now, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(3 \sqrt{2}-2 \sqrt{3})(3 \sqrt{2}-2 \sqrt{3})}{18-12}+\frac{\sqrt{12}(\sqrt{3}+\sqrt{2})}{3-2}$
    As we know,$(a-b)^{2}=\left(a^{2}-2 \times a \times b+b^{2}\right)$
    $=\frac{(3 \sqrt{2})^{2}-(2 \times 3 \sqrt{2} \times 2 \sqrt{3})+(2 \sqrt{3})^{2}}{6}+2 \sqrt{3}(\sqrt{3}+\sqrt{2})$
    $=\frac{(18-12 \sqrt{6}+12)}{6}+(6+2 \sqrt{6})$
    $=3-2 \sqrt{6}+2+(6+2 \sqrt{6})$
    $=5-2 \sqrt{6}+(6+2 \sqrt{6})$
    $=11$
    (ii) $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{5}+\sqrt{3}$ for $\frac{1}{\sqrt{5}-\sqrt{3}}$ and the rationalizing factor $\sqrt{5}-\sqrt{3}$ for $\frac{1}{\sqrt{5}+\sqrt{3}}$
    $=\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}+\frac{(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$
    Now as we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right),(a-b)^{2}=\left(a^{2}-2 \times a \times b+b^{2}\right)$ and
    $(a+b)^{2}=\left(a^{2}+2 \times a \times b+b^{2}\right)$
    $=\frac{5+2 \times \sqrt{5} \times \sqrt{3}+3}{5-3}+\frac{5-2 \times \sqrt{3} \times \sqrt{5}+3}{5-3}$
    $=\frac{8+2 \sqrt{15}+8-2 \sqrt{15}}{2}$
    $=\frac{16}{2}$
    $=8$
    (iii) $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3-\sqrt{5}$ for $\frac{1}{3+\sqrt{5}}$ and the rationalizing factor $3+\sqrt{5}$ for $\frac{1}{3-\sqrt{5}}$
    $\frac{(7+3 \sqrt{5})(3-\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{(7-3 \sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3-\sqrt{5})}$
    Now as we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$ $=\frac{(7+3 \sqrt{5})(3-\sqrt{5})}{9-5}-\frac{(7-3 \sqrt{5})(3+\sqrt{5})}{9-5}$
    $=\frac{(21-7 \sqrt{5}+9 \sqrt{5}-15)}{4}-\frac{(21+7 \sqrt{5}-9 \sqrt{5}-15)}{4}$
    $=\frac{(6+2 \sqrt{5})}{4}-\frac{(6-2 \sqrt{5})}{4}$
    $=\frac{4 \sqrt{5}}{4}$
    $=\sqrt{5}$
    (iv) $\frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2-\sqrt{3}$ for $\frac{1}{2+\sqrt{3}}$, the rationalizing factor $\sqrt{5}+\sqrt{3}$ for $\frac{1}{\sqrt{5}-\sqrt{3}}$, and the rationalizing factor $2+\sqrt{5}$ for $\frac{1}{2-\sqrt{5}}$
    $=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}+\frac{2 \times(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}+\frac{2+\sqrt{5}}{(2-\sqrt{5})(2+\sqrt{5})}$
    Since $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{2-\sqrt{3}}{4-3}+\frac{2 \times(\sqrt{5}+\sqrt{3})}{5-3}+\frac{2+\sqrt{5}}{4-5}$
    $=\frac{2-\sqrt{3}}{1}+\frac{2 \sqrt{5}+2 \sqrt{3}}{2}+\frac{2+\sqrt{5}}{-1}$
    $=\frac{4-2 \sqrt{3}+2 \sqrt{5}+2 \sqrt{3}-4-2 \sqrt{5}}{2}$
    $=\frac{0}{2}$
    $=0$
    (v) $\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{5}-\sqrt{3}$ for $\frac{1}{\sqrt{5}+\sqrt{3}}$, the rationalizing factor $\sqrt{3}-\sqrt{2}$ for $\frac{1}{\sqrt{3}+\sqrt{2}}$, and the rationalizing factor $\sqrt{5}-\sqrt{2}$ for $\frac{1}{\sqrt{5}+\sqrt{2}}$
    $=\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}-\frac{3 \times(\sqrt{5}-\sqrt{2})}{\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}$
    Since $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{2(\sqrt{5}-\sqrt{3})}{5-3}+\frac{\sqrt{3}-\sqrt{2}}{3-2}-\frac{3 \times(\sqrt{5}-\sqrt{2})}{5-2}$
    $=\frac{2 \sqrt{5}-2 \sqrt{3}}{2}+\frac{\sqrt{3}-\sqrt{2}}{1}-\frac{3 \times \sqrt{5}-3 \sqrt{2}}{3}$
    $=\frac{6 \sqrt{5}-6 \sqrt{3}+6 \sqrt{3}-6 \sqrt{2}-6 \sqrt{5}+6 \sqrt{2}}{3}$
    $=\frac{0}{3}$
    $=0$

    6. In each of the following determine rational numbers a and b:
    (i) $\frac{\sqrt{3}-1}{\sqrt{3}+1}=a-b \sqrt{3}$
    (ii) $\frac{4+\sqrt{2}}{2+\sqrt{2}}=\mathrm{a}-\sqrt{\mathrm{b}}$
    (iii) $\frac{3+\sqrt{2}}{3-\sqrt{2}}=\mathrm{a}+\mathrm{b} \sqrt{2}$
    (iv) $\frac{5+3 \sqrt{3}}{7+4 \sqrt{3}}=\mathrm{a}+\mathrm{b} \sqrt{3}$
    (v) $\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}=\mathrm{a}-\mathrm{b} \sqrt{77}$
    (vi) $\frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=\mathrm{a}+\mathrm{b} \sqrt{5}$
    Solution:
    (i) Given,
    $\frac{\sqrt{3}-1}{\sqrt{3}+1}=\mathrm{a}-\mathrm{b} \sqrt{3}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{3}-1$
    $=\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{3-2 \sqrt{3}+1}{3-1}$
    $=\frac{4-2 \sqrt{3}}{2}$
    $\begin{aligned}=& 2-\sqrt{3} \\ & 2-\sqrt{3}=a-b \sqrt{3} \end{aligned}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=2$ and $b=1$
    (ii) Given;
    $\frac{4+\sqrt{2}}{2+\sqrt{2}}=a-\sqrt{b}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2-\sqrt{2}$
    $=\frac{(4+\sqrt{2})(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(8-4 \sqrt{2}+2 \sqrt{2}-2)}{4-2}$
    $=\frac{(6-2 \sqrt{2})}{2}$
    $=3-\sqrt{2}$
    $3-\sqrt{2}=\mathrm{a}-\sqrt{\mathrm{b}}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=3$ and $b=2$
    (iii) Given,
    $\frac{3+\sqrt{2}}{3-\sqrt{2}}=\mathrm{a}+\mathrm{b} \sqrt{2}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3+\sqrt{2}$
    $=\frac{(3+\sqrt{2})(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(9+6 \sqrt{2}+2)}{9-2}$
    $=\frac{(11+6 \sqrt{2})}{7}$
    $=\frac{11}{7}+\frac{6 \sqrt{2}}{7}$
    $\frac{11}{7}+\frac{6 \sqrt{2}}{7}=\mathrm{a}+\mathrm{b} \sqrt{2}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=\frac{11}{7}+\frac{6 \sqrt{2}}{7}$ and
    $b=\frac{6}{7}$
    (iv) Given,
    $\frac{5+3 \sqrt{3}}{7+4 \sqrt{3}}=\mathrm{a}+\mathrm{b} \sqrt{3}$9Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $7-4 \sqrt{3}$
    $=\frac{(5+3 \sqrt{3})(7-4 \sqrt{3})}{(7+4 \sqrt{3})(7-4 \sqrt{3})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(35-20 \sqrt{3}+21 \sqrt{3}-36)}{49-48}$
    $=-1+\sqrt{3}$
    $-1+\sqrt{3}=a+b \sqrt{3}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=-1$ and
    $b=1$
    (v) $\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}=\mathrm{a}-\mathrm{b} \sqrt{77}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{11}-\sqrt{7}$
    $=\frac{(\sqrt{11}-\sqrt{7})(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(11-\sqrt{77}-\sqrt{77}+7)}{11-7}$
    $=\frac{(18-2 \sqrt{77})}{4}$
    $=\frac{9}{2}-\frac{\sqrt{77}}{2}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=\frac{9}{2}$ and
    $b=\frac{1}{2}$
    (vi) Given,
    $=\frac{4+3 \sqrt{5}}{4-3 \sqrt{5}}=\mathrm{a}+\mathrm{b} \sqrt{5}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $4+3 \sqrt{5}$
    $=\frac{(4+3 \sqrt{5})(4+3 \sqrt{5})}{(4-3 \sqrt{5})(4+3 \sqrt{5})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(16+24 \sqrt{5}+45)}{-29}$
    $=\frac{(61+24 \sqrt{5})}{-29}$
    $=\frac{-61}{29}-\frac{(24 \sqrt{5})}{29}$
    $\frac{-61}{29}-\frac{(24 \sqrt{5})}{29}=\mathrm{a}+\mathrm{b} \sqrt{5}$
    On comparing the rational and irrational parts of the above equation, we get,
    $a=\frac{-61}{29}$, and
    $b=\frac{-24}{29}$

    7. If $x=2+\sqrt{3}$, find the value of $x^{3}+\frac{1}{x^{3}}$
    Solution:
    Given,
    $x=2+\sqrt{3}$
    To find the value of $\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}$
    We have, $x=2+\sqrt{3}$
    $\frac{1}{x}=\frac{1}{2+\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $2-\sqrt{3}$ for $\frac{1}{2+\sqrt{3}}$
    $=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$
    Since, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $\frac{1}{x}=\frac{2-\sqrt{3}}{4-3}$
    $x+\frac{1}{x}=2+\sqrt{3}+2-\sqrt{3}$
    $x+\frac{1}{x}=4$
    We know that, $\left(\mathrm{a}^{3}+\mathrm{b}^{3}\right)=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}-x \cdot \frac{1}{x}+\frac{1}{x^{2}}\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x}^{2}-1\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}+2-2-1\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}+2\left(x \cdot \frac{1}{x}\right)-2-1\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=\left(x+\frac{1}{x}\right)\left(\left(x+\frac{1}{x}\right)^{2}-3\right)$
    Putting the value of $\mathrm{x}+\frac{1}{\mathrm{x}}$ in the above equation, we get,
    $\left(x^{3}+\frac{1}{x^{3}}\right)=(4)\left(4^{2}-3\right)$
    $\left(x^{3}+\frac{1}{x^{3}}\right)=52$

    8. If $x=3+\sqrt{8}$, find the value of $\left(x^{2}+\frac{1}{x^{2}}\right)$
    Solution:
    Given,
    $x=3+\sqrt{8}$
    To find the value of $\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)$
    We have, $x=3+\sqrt{8}$
    $\frac{1}{x}=\frac{1}{3+\sqrt{8}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3-\sqrt{8}$ for $\frac{1}{3+\sqrt{8}}$
    $\frac{1}{x}=\frac{3-\sqrt{8}}{(3+\sqrt{8})(3-\sqrt{8})}$
    Since $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $\frac{1}{x}=\frac{3-\sqrt{8}}{9-8}$
    $\frac{1}{x}=3-\sqrt{8}$
    $\left(\mathrm{x}^{2}+\frac{1}{x^{2}}\right)=\left((3+\sqrt{8})^{2}(3-\sqrt{8})^{2}\right)$
    $\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)=((9+8+6 \sqrt{8})+(9+8-6 \sqrt{8}))$
    34

    9. Find the value of $\frac{6}{\sqrt{5}-\sqrt{3}}$, it being given that $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$.
    Solution:
    Given,
    $\frac{6}{\sqrt{5}-\sqrt{3}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $\sqrt{5}+\sqrt{3}$ for $\frac{1}{\sqrt{5}-\sqrt{3}}$
    $=\frac{6(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}$
    Since, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{6 \sqrt{5}+6 \sqrt{3}}{5-3}$
    $=\frac{6 \sqrt{5}+6 \sqrt{3}}{2}$
    $=3(\sqrt{5}+\sqrt{3})$
    $=3(2.236+1.732)$
    $=3(3.968)$
    $=11.904$

    10. Find the values of each of the following correct to three places of decimals, it being given that
    $\sqrt{2}=1.414, \sqrt{3}=1.732, \sqrt{5}=2.236, \sqrt{6}=2.4495, \sqrt{10}=3.162$
    (i) $\frac{3-\sqrt{5}}{3+2 \sqrt{5}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3-2 \sqrt{5}$
    $=\frac{(3-\sqrt{5})(3-2 \sqrt{5})}{(3+2 \sqrt{5})(3+2 \sqrt{5})}$
    Since, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(3-\sqrt{5})(3-2 \sqrt{5})}{9-20}$
    $=\frac{(9-6 \sqrt{5}-3 \sqrt{5}+10)}{-11}$
    $=\frac{(19-9 \sqrt{5})}{-11}$
    $=\frac{(9 \sqrt{5}-19)}{11}$
    $=\frac{(9(2.236))-19)}{11}$
    $=\frac{(20.124-19)}{11}$
    $=\frac{1.124}{11}$
    $=0.102$
    (ii) $\frac{1+\sqrt{2}}{3-2 \sqrt{2}}$
    Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor $3+2 \sqrt{2}$
    $=\frac{(1+\sqrt{2})(3+2 \sqrt{2})}{(3-2 \sqrt{2})(3+2 \sqrt{2})}$
    As we know, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
    $=\frac{(1+\sqrt{2})(3+2 \sqrt{2})}{9-8}$
    $=3+2 \sqrt{2}+3 \sqrt{2}+4$
    $=7+5 \sqrt{2}$
    $=7+7.07$
    $=14.07$

    11. If $x=\frac{\sqrt{3}+1}{2}$, find the value of $4 x^{3}+2 x^{2}-8 x+7$.
    Solution:
    Given,
    $x=\frac{\sqrt{3}+1}{2}$ and given to find the value of $4 x^{3}+2 x^{2}-8 x+7$
    $2 x=\sqrt{3}+1$
    $2 x-1=\sqrt{3}$
    Now, squaring on both the sides, we get,
    $(2 x-1)^{2}=3$
    $4 x^{2}-4 x+1=3$
    $4 x^{2}-4 x+1-3=0$
    $4 x^{2}-4 x-2=0$
    $2 x^{2}-2 x-1=0$
    Now taking $4 \mathrm{x}^{3}+2 \mathrm{x}^{2}-8 \mathrm{x}+7$
    $2 x\left(2 x^{2}-2 x-1\right)+4 x^{2}+2 x+2 x^{2}-8 x+7$
    $2 x\left(2 x^{2}-2 x-1\right)+6 x^{2}-6 x+7$
    As, $2 \mathrm{x}^{2}-2 \mathrm{x}-1=0$
    $\left.2 x(0)+3\left(2 x^{2}-2 x-1\right)\right)+7+3$
    $0+3(0)+10$
    10

      Leave a Comment

      Your email address will not be published. Required fields are marked *

      error: Content is protected !!